5 research outputs found

    Decentralized Convex Optimization for Wireless Sensor Networks

    Get PDF
    Many real-world applications arising in domains such as large-scale machine learning, wired and wireless networks can be formulated as distributed linear least-squares over a large network. These problems often have their data naturally distributed. For instance applications such as seismic imaging, smart grid have the sensors geographically distributed and the current algorithms to analyze these data rely on centralized approach. The data is either gathered manually, or relayed by expensive broadband stations, and then processed at a base station. This approach is time-consuming (weeks to months) and hazardous as the task involves manual data gathering in extreme conditions. To obtain the solution in real-time, we require decentralized algorithms that do not rely on a fusion center, cluster heads, or multi-hop communication. In this thesis, we propose several decentralized least squares optimization algorithm that are suitable for performing real-time seismic imaging in a sensor network. The algorithms are evaluated and tested using both synthetic and real-data traces. The results validate that our distributed algorithm is able to obtain a satisfactory image similar to centralized computation under constraints of network resources, while distributing the computational burden to sensor nodes

    INDIGO: An In Situ Distributed Gossip Framework for Sensor Networks

    Get PDF
    Abstract—With the onset of Cyber-Physical Systems (CPS), distributed algorithms on Wireless Sensor Networks(WSNs) have been receiving renewed attention. The distributed consensus problem is a well studied problem having a myriad of applications which can be accomplished using asynchronous distributed gossip algorithms on Wireless Sensor Networks(WSN). However, a practical realization of gossip algorithms for WSNs is found lacking in the current state of the art. In this paper, we propose the design, development and analysis of a novel in-situ distributed gossip framework called INDIGO. A key aspect of INDIGO is its ability to execute on a generic system platform as well as on a hardware oriented testbed platform in a seamless manner allowing easy portability of existing algorithms. We evaluate the performance of INDIGO with respect to the distributed consensus problem as well as the distributed optimization problem. We also present a data driven analysis of the effect, certain operating parameters like sleep time and wait time have on the performance of the framework and empirically attempt to determine a sweet spot. The results obtained from various experiments on INDIGO validate its efficacy, reliability and robustness and demonstrate its utility as a framework for the evaluation and implementation of asynchronous distributed algorithms

    Decentralized multigrid for in-situ big data computing

    No full text
    corecore